

Disciplina: Teoria e Modelagem de Compressores de Refrigeração	Código: EMC 410174
Área(s) de Concentração: Engenharia e Ciências Térmicas	
Carga Horária Total:30h	N° de Créditos: 2
Teórica: 28h	Classificação: Normal
Prática: 4h/a	Bimestre (s): 4°
Prof. César J. Deschamps, Ph.D.	

Pré-requisitos:

Código	Disciplina

Ementa:

Ciclo de refrigeração por compressão de vapor; Compressores alternativos; Modelagem de compressores; Sistemas de válvulas; Caracterização experimental de compressores; Outros tipos de compressores de deslocamento positivo; Fluidos refrigerantes; Mancais; Compressores centrífugos.

Programa:

- **1. Ciclo de Refrigeração por Compressão de Vapor (4h)**: Principais componentes; Ciclo de refrigeração saturado; Coeficiente de performance; Parâmetros que afetam o desempenho do sistema; Evolução de compressores; Compressores do tipo aberto e hermético; Condições para teste de compressores.
- **2.** Compressores Alternativos (2h): Mecanismos de acionamento; Faixas de aplicação; Velocidade de operação; O ciclo de compressão; Eficiências volumétrica e isentrópica; Eficiências mecânica e elétrica; Parâmetros que afetam a eficiência de compressores.
- **3. Modelagem de Compressores (4h)**: Tipos de modelos; Modelo básico; Volume em função do tempo; Relações termodinâmicas; Transferência de calor; Vazamentos; Estrutura geral de modelo de simulação.
- **4.Sistemas de Válvulas (2h)**:Tipos de válvulas; Tempo de abertura; Válvulas ideal e real; Dinâmica de válvulas; Adesão de válvulas, Vazamentos, Áreas efetivas de força e escoamento; Confiabilidade.
- **5.** Caracterização Experimental de Compressores (4h):Bancada experimental; Diagrama p-V; Pressão nas câmaras de sucção e descarga: Ineficiências em válvulas e filtros acústicos; Superaquecimento.
- **6.Outros tipos de Compressores de Deslocamento Positivo (4h)**:Compressores de pistão rolante, scroll e parafuso; Princípio de operação; Ciclo de compressão; Processos de sucção e descarga; Vantagens e desvantagens; Modelagem matemática; Aplicações.
- **7.Fluidos Refrigerantes (2h)**:Requerimentos; Classificação e seleção; Aplicaçõesem refrigeração doméstica e comercial leve; Efeito do fluido refrigerante sobre o desempenho do compressor.
- **8.Mancais (4h)**:Princípio de funcionamento; Mancais aerostáticos; Lubrificação hidrodinâmica; Equação de Reynolds, Aplicações.
- **9.Compressores Centrífugos (4h)**:Princípio de operação; Processo de compressão; Projeto do rotor e do difusor; Triângulos de velocidade; Análise termodinâmica de estágios de compressão, Eficiência.

Critério de Avaliação:

Primeira Prova	(conteúdos 1 a 5)	Peso 35%	
 Segunda Prova 	(conteúdos 6 a 9)	Peso 35%	
 Trabalhos 	(conteúdos 1 a 9)	Peso 30%	

Bibliografia:

- H. P. Bloch, Compressor Technology, Wiley, 2006.
- C. J. Deschamps, Notas de Aula, 2016.
- S. L.Dixon, Fluid Mechanics and Thermodynamics of Turbomachinery, Butterworth, 1998.
- W. L. Soedel, Sound and Vibrations of Positive Displacement Compressors, CRC Press, 2007.
- N. Stosic, I. Smith, A.Kovacevic, *Screw Compressors*, Springer, 2005.