

Disciplina: Projeto de Estruturas de Materiais Compostos B	Código: EMC 410114
Área(s) de Concentração: Análise e Projeto	
Carga Horária Total: 30h	N° de Créditos: 2
Teórica: 30h	Classificação: Eletiva
Prática: -	Bimestre (s): 4º
Professor: Paulo de Tarso Rocha Mendonça	

Pré-requisitos:

Código	Disciplina
EMC 410046	Fundamentos de Mecânica dos Sólidos A ou equivalente.
EMC 410096	Método de Elementos Finitos A ou equivalente.
EMC 410097	Projeto de Estruturas de Materiais Compostos A ou equivalente.
	Disciplinas acima podem ser feitas simultaneamente com a de P.E.M. Compostos
	A.

Ementa:

Formulações de Elementos Finitos de 1ª. ordem para placas laminadas. Matriz de rigidez linear, de inércia, vetor força. Freqüências naturais. Programação em elementos finitos. Análise usando o ANSYS. Estabilidade e carga crítica de flambagem. Método do equilíbrio adjacente. Analise de carga de flambagem e Identificação de tensões interlaminares no Ansys. Análise de placas sanduíche. Solução analítica de elasticidade 3D p/placa retangular.

Teorias de ordem superior.

Programa:

Frograma.		
Aula	Tópicos	
1	Formulações de Elementos Finitos de 1 ^a . ordem para placas laminadas.	
2	Matriz de rigidez linear, de inércia, vetor força. Freqüências naturais.	
3	Programação em elementos finitos	
4	Análise usando o ANSYS	
5	Estabilidade e carga crítica de flambagem. Método do equilíbrio adjacente.	
6	Estabilidade	
7	Analise de carga de flambagem no Ansys	
8	Identificação de tensões interlaminares no Ansys.	
9	Análise de placas sanduíche. Solução analítica de elasticidade 3D p/placa retangular.	
10	Teoria de 1 ^a . ordem p/ sanduíche. Comparação de resultados.	
11	Teorias de ordem superior. As principais teorias. Relações cinemáticas.	
12	Teorias de ordem superior.	
	PROVA	
	Seminário: Apresentação de trabalho	

Critério de Avaliação:

Uma prova e um trabalho com apresentação oral.

Bibliografia:

O curso é baseado na primeira bibliografia abaixo. Os alunos também tem acesso a consulta nas demais referências indicadas e em papers associados aos diversos tópicos (não listados aqui).

Mendonça, P.T.M., Materiais compostos e estruturas sanduíche - Projeto e Análise, Editora Manole, SP, 2005.

Bhagwan D. Agarwal & L. J. Broutman. Analysis and performance of fiber composites. John Wiley, N.Y., 1990.