

Disciplina: Modelagem de Motores a Combustão Interna	Código: EMC410076	
Área(s) de Concentração: Engenharia e Ciências Térmicas		
Carga Horária Total:30 horas	N° de Créditos:2	
Teórica:30h	Classificação: Eletiva	
Prática:	Bimestre (s):2	
Prof. Amir Antônio Martins de Oliveira, Ph.D.		

Pré-requisitos:

Código	Disciplina

Ementa:

Classificação e parâmetros de desempenho de motores; Ciclo ar-combustível padrão; Modelos e simulação; Alimentação e exaustão, Injeção, Escoamentos na admissão e exaustão, Modelos de enchimento e esvaziamento, Sobre-alimentação; Combustão em motores de ignição por centelha, Preparação da mistura, Ignição, Estrutura e propagação de chamas, Métodos de zonas, Combustão anormal e detonação; Combustão em motores de ignição por compressão, Injeção, Ignição, Estrutura da combustão; Transferência de calor; Formação e controle de emissões.

Programa:

Tópico	Horas
1. Classificação e parâmetros de desempenho de motores	2
2. Modelos e simulação de motores a combustão interna	4
3. Ciclo ar-combustível padrão	4
4. Alimentação e exaustão	4
5. Combustão em motores de ignição por centelha	6
6. Combustão em motores de ignição por compressão	6
7. Transferência de calor	6
8. Formação e controle de emissões	4

Critério de Avaliação:

Trabalhos semanais: 60% Prova escrita parcial: 40%

Bibliografia:

- 1. Heywood, J., Internal Combustion Engines Fundamentals, McGraw-Hill, New York, 1988.
- 2. Horlock, J. H. e Winterbone, D. E. (eds.), *The Thermodynamics and Gas Dynamics of Internal Combustion Engines*, Clarendom Press, Oxford, 1986.
- 3. Turns, S. R., An Introduction to Combustion, 4a edição, McGraw-Hill, New York, 2010.
- 4. Merker, G. P., Schwarz, C. e Teichmann, R. (Eds.), Combustion Engines Development, Springer, 2012.
- 5. Baumgarten, C., Mixture Formation in Internal Combustion Engines, Springer, 2006.
- 6. Shi, Y., Ge, H.-W. e Reitz, R. D., *Computational Optimization of Internal Combustion Engines*, Springer, 2011.